A comparative genomic approach for identifying synthetic lethal interactions in human cancer.

Abstract

Synthetic lethal interactions enable a novel approach for discovering specific genetic vulnerabilities in cancer cells that can be exploited for the development of therapeutics. Despite successes in model organisms such as yeast, discovering synthetic lethal interactions on a large scale in human cells remains a significant challenge. We describe a comparative genomic strategy for identifying cancer-relevant synthetic lethal interactions whereby candidate interactions are prioritized on the basis of genetic interaction data available in yeast, followed by targeted testing of candidate interactions in human cell lines. As a proof of principle, we describe two novel synthetic lethal interactions in human cells discovered by this approach, one between the tumor suppressor gene SMARCB1 and PSMA4, and another between alveolar soft-part sarcoma-associated ASPSCR1 and PSMC2. These results suggest therapeutic targets for cancers harboring mutations in SMARCB1 or ASPSCR1 and highlight the potential of a targeted, cross-species strategy for identifying synthetic lethal interactions relevant to human cancer.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)